DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4521B MSI
 24-stage frequency divider and oscillator

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4521B consists of a chain of 24 toggle flip-flops with an overriding asynchronous master reset input (MR), and an input circuit that allows three modes of operation. The single inverting stage $\left(\mathrm{I}_{2} / \mathrm{O}_{2}\right)$ will function as a crystal oscillator, or in combination with I_{1} as an RC oscillator, or as an input buffer for an external oscillator. Low-power
operation as a crystal oscillator is enabled by connecting external resistors to pins $3\left(\mathrm{~V}_{S S^{\prime}}\right)$ and $5\left(\mathrm{~V}_{\mathrm{DD}}\right)$.
Each flip-flop divides the frequency of the previous flip-flop by two, consequently the HEF4521B will count up to $2^{24}=16777216$. The counting advances on the HIGH to LOW transition of the clock $\left(\mathrm{I}_{2}\right)$. The outputs of the last seven stages are available for additional flexibility.

Fig. 1 Functional diagram.

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

Fig. 2 Pinning diagram.

HEF4521BP(N): 16-lead DIL; plastic (SOT38-1)
HEF4521BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4521BT(D): 16-lead SO; plastic (SOT109-1)
(): Package Designator North America

COUNT CAPACITY

OUTPUT	COUNT CAPACITY
O_{18}	$2^{18}=262144$
O_{19}	$2^{19}=524288$
O_{20}	$2^{20}=1048576$
O_{21}	$2^{21}=2097152$
O_{22}	$2^{22}=4194304$
O_{23}	$2^{23}=8388608$
O_{24}	$2^{24}=16777216$

FUNCTIONAL TEST SEQUENCE

INPUTS		CONTROL TERMINALS			OUTPUTS	REMARKS
MR	I_{2}	O_{2}	$\mathrm{V}_{\text {Ss }}$ '	V_{DD},	O_{18} to O_{24}	
H	L	L	$V_{\text {DD }}$	$\mathrm{V}_{\text {SS }}$	L	counter is in three 8-stage sections in parallel mode; I_{2} and O_{2} are interconnected (O_{2} is now input); counter is reset by MR
L	Ω	Ω	$V_{\text {DD }}$	$\mathrm{V}_{\text {SS }}$	H	255 pulses are clocked into $\mathrm{I}_{2}, \mathrm{O}_{2}$ (the counter advances on the LOW to HIGH transition)
L	L	L	$\mathrm{V}_{S S}$	$\mathrm{V}_{\text {SS }}$	H	V_{SS} ' is connected to $\mathrm{V}_{\text {SS }}$
L	H	L	$\mathrm{V}_{S S}$	$\mathrm{V}_{\text {SS }}$	H	the input I_{2} is made HIGH
L	H	L	$\mathrm{V}_{S S}$	V_{DD}	H	V_{DD} ' is connected to $\mathrm{V}_{\mathrm{DD}} ; \mathrm{O}_{2}$ is now made floating and becomes an output; the device is now in the 2^{24} mode
L	L		$\mathrm{V}_{S S}$	$V_{\text {DD }}$	L	counter ripples from an all HIGH state to an all LOW state

A test function has been included for the reduction of the test time required to exercise all 24 counter stages. This test function divides the counter into three 8-stage sections by connecting $\mathrm{V}_{S S}$ to V_{DD} and V_{DD} to $\mathrm{V}_{S S}$. Via I_{2} (connected to O_{2}) 255 counts are loaded into each of the 8 -stage sections in parallel. All flip-flops are now at a HIGH state.

The counter is now returned to the normal 24-stage in series configuration by connecting V_{SS} ' to $\mathrm{V}_{S S}$ and V_{DD} ' to $V_{D D}$. One more pulse is entered into input l_{2}, which will cause the counter to ripple from an all HIGH state to an all LOW state.
Fig． 3 Logic diagram；for schematic diagram of clock circuit see Fig．4．
はに」
GLZSカコヨH

Fig. 4 Schematic diagram of clock input circuitry.

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{I}_{2} \rightarrow \mathrm{O}_{18}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 950 \\ & 350 \\ & 220 \end{aligned}$	$\begin{array}{r} 1900 \\ 700 \\ 440 \end{array}$	ns ns ns	$\begin{aligned} & 923 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 339 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ & 212 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tple	$\begin{aligned} & \hline 950 \\ & 350 \\ & 220 \\ & \hline \end{aligned}$	$\begin{array}{r} 1900 \\ 700 \\ 440 \end{array}$	ns ns ns	$\begin{aligned} & \hline 923 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 339 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 212 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{O}_{\mathrm{n}} \rightarrow \mathrm{O}_{\mathrm{n}}+1$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 40 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 80 \\ & 30 \\ & 20 \end{aligned}$	ns ns ns	$\begin{aligned} 13 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 4 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 2 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$	$\begin{aligned} & 40 \\ & 15 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 30 \\ & 20 \end{aligned}$	ns ns ns	$\begin{aligned} 13 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 4 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 2 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$
$\mathrm{MR} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PHL }}$	$\begin{array}{r} \hline 120 \\ 55 \\ 40 \\ \hline \end{array}$	$\begin{array}{r} \hline 240 \\ 110 \\ 80 \end{array}$	ns ns ns	$\begin{aligned} & \hline 93 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 44 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
$\mathrm{I}_{1} \rightarrow \mathrm{O}_{1}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tPHL	$\begin{aligned} & 90 \\ & 35 \\ & 25 \end{aligned}$	$\begin{array}{r} 180 \\ 70 \\ 50 \end{array}$	ns ns ns	$\begin{aligned} & 63 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 24 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 17 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & \hline \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} & \hline 33 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 19 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 12 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD} V	SYMBOL	MIN.	TYP.	MAX.	
Minimum I_{2} pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	twi2H	$\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$	40 20 15	ns ns ns	see also waveforms Fig. 5
Minimum MR pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	twMRH	$\begin{aligned} & 70 \\ & 40 \\ & 30 \end{aligned}$	$\begin{aligned} & 35 \\ & 20 \\ & 15 \end{aligned}$	ns ns ns	
Recovery time for MR	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {RMR }}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{array}{r} -10 \\ -5 \\ 0 \end{array}$	ns ns ns	
Maximum clock pulse frequency	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{f}_{\text {max }}$	$\begin{array}{r} 6 \\ 12 \\ 17 \end{array}$	$\begin{aligned} & 12 \\ & 25 \\ & 35 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	

	V $_{\mathbf{D D}}$	TYPICAL FORMULA FOR $\mathbf{P}(\mu \mathrm{W})$	
Dynamic power	5	$1200 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$5100 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$13050 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
			$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)
			$\sum\left(\mathrm{f}_{\mathrm{O}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

Fig. 5 Waveforms showing minimum pulse widths for $M R$ and I_{2}, recovery time for MR .

APPLICATION INFORMATION

(1) Optional for low power operation.

Fig. 6 Crystal oscillator circuit.

Typical characteristics for crystal oscillator circuit (Fig.6):

	$\mathbf{5 0 0} \mathbf{~ k H z}$ CIRCUIT	$\mathbf{5 0} \mathbf{~ k H z}$ CIRCUIT	UNIT
Crystal characteristics			
resonance frequency	500	50	kHz
crystal cut	S	N	-
equivalent resistance; R_{S}	1	6,2	$\mathrm{k} \Omega$
External resistor/capacitor values			
R_{0}	47	750	$\mathrm{k} \Omega$
C_{T}	82	82	pF
C_{S}	20	20	pF

Fig. 7 RC oscillator circuit;

$$
\begin{aligned}
& f \approx \frac{1}{2,3 \times R_{T C} \times C} ; R_{S} \geq 2 R_{T C} \text {, in which: } \\
& f \text { in } H z, R \text { in } \Omega, C \text { in } F .
\end{aligned}
$$

$$
\mathrm{R}_{\mathrm{S}}+\mathrm{R}_{\mathrm{TC}}<\frac{\mathrm{V}_{\mathrm{IL} \max }}{\mathrm{I}_{\mathrm{LI}}}
$$

(maximum input voltage LOW)
(input leakage current)

- - $\mathrm{R}_{\mathrm{TC}} ; \mathrm{C}=1 \mathrm{nF} ; \mathrm{R}_{\mathrm{S}} \approx 2 \mathrm{R}_{\mathrm{TC}}$
$-\mathrm{C} ; \mathrm{R}_{\mathrm{TC}}=56 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{S}}=120 \mathrm{k} \Omega$

Fig. 8 Oscillator frequency as a function of $R_{T C}$ and C;
$V_{D D}=10 \mathrm{~V}$; test circuit is
Fig.7.

Fig. 9 Test set-up for measuring forward transconductance $\mathrm{g}_{\mathrm{fs}}=\mathrm{di}_{\mathrm{o}} / \mathrm{d}_{\mathrm{vi}}$ at v_{o} is constant (see also graph Fig.10).

A: average,
B: average + 2 s
C : average -2 s , in which: ' s ' is the observed standard deviation.

Fig. 10 Typical forward transconductance $g_{f s}$ as a function of the supply voltage at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 11 Voltage gain $\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{\mathrm{I}}$ as a function of supply voltage.

\square

